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Abstract - Prey-predator model has received much attention 

during the last few decades due to its wide range of 

applications. There are many different kinds of prey-predator 

models in mathematical ecology. The discrete time models 

governed by difference equations are more appropriate than the 

continuous time models to describe the prey-predator relations. 

Thispaper aims to study the effect of harvested prey species on 

a Holling type IV prey predator model involving intra-specific 

competition. Harvesting has a strong impact on the dynamic 

evolution of a population. This model represents 

mathematically by nonlinear differential equations. The locally 

asymptotic stability conditions of all possible equilibrium 

points were obtained. The stability/instability of nonnegative 

equilibrium and associated bifurcation were investigated by 

analysing the characteristic equations.  Moreover, bifurcation 

diagram were obtained for different values of parameters of 

proposed model.  Finally, numerical simulation was used to 

study the global and rich dynamics of that model. 

 

Keywords: Prey-Predator model, Functional response, 

Harvesting, Bifurcation. 

 

I.INTRODUCTION 

 

In recent years, one of the important predator – prey models 

with the functional response is the Holling type – IV, originally 

due to Holling which has been extensively studies in many 

articles [4-6, 11].Discrete time models give rise to more 

efficient computational models for numerical simulations and 

it exhibits more plentiful dynamical behaviours than a 

continuous time model of the same type. There has been 

growing interest in the study of prey-predator discrete time 

models described by differential equations.  In ecology, 

predator-prey or plant herbivore models can be formulated as 

discrete time models.  It is well known that one of the 

dominant themes in both ecology and mathematical ecology is 

the dynamic relationship between predators and their prey. One 

of the important factors which affect the dynamical properties 

of biological and mathematical models is the functional 

response.  The formulation of a predator-prey model critically 

depends on the form of the functional response that describes 

the amount of prey consumed per predator per unit of time, as 

well as the growth function of prey [1,15]. That is a functional 

response of the predator to the prey density in population 

dynamics refers to the change in the density of prey attached 

per unit time per predator as the prey density changes.   

 

Two species models like Holling type II, III and IV of predator 

to its prey have been extensively discussed in the literature[2-

6,9,16].  Leslie-Gower predator- prey model with variable 

delays, bifurcation analysis with time delay, global stability in 

a delayed diffusive system has been studied [8,12,14].  Three 

tropic level food chain system with Holling type IV functional 

responses , the discrete Nicholson Bailey model with Holling 

type II functional response and global dynamical behavior of 

prey-predator system  has been revisited[7,10,11,13].The 

purpose of this paper is study the effect of harvested prey 

species on a Holling type IV prey predator model involving 

intra-specific competition. We prove that the model has 

bifurcation that is associated with intrinsic growth rate.  The 

stability analysis that we carried out analytically has also been 

proved.  

The period-doubling or bifurcations exhibited by the discrete 

models can be attributed to the fact that ecological 

communities show several unstable dynamical states, which 

can change with very small perturbation. This paper is 

organized as follows:  In section 2 we introduced the model. In 

section 3, the equilibrium points and the local stability 

conditions of the trivial and axial equilibrium points were 

investigated by using theorem when the prey population in 

system (3) is subject to an Holling type IV functional response. 

In section 4 we analysed the local and dynamical behaviour of 

the interior equilibrium point, when the prey population in 

system (3) is subject to an Holling type IV functional response.  

In section 5, some numerical simulations, dynamical behaviour 

of the system and bifurcation diagrams supporting the 

theoretical stability results were shown.  Finally, the last 

section 6, is devoted to the conclusion and remarks.  Diagrams 

were presented in Appendix. 

In this paper we consider the following Lotka-Volterra Prey- 

Predator system: 

 

                                 (1) 

 

   here (0 ), (0 ) 0 ,x y   

Where     x a n d y represent the prey and predator density, 

respectively.  ( )  an d  ( )p x q x are so-called predator  and prey 

functional response respectively.  ,  0    are the 

conversion and predator`s death rates, respectively.  If 

( )
m x

p x
a x




 refers to as Michaelis-Menten function or a 
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Holling type – II function, where 0m   denotes the maximal 

growth rate of the species and 0a   is half-saturation 

constant.  Another class of response functions are Holling type-

III and Holling type-IV function, in which Holling type – III 

function is  

2

2
( )

m x
p x

a x



 and Holling type-IV function is 

2
( )

m x
p x

a x



.  The Holling type – IV function otherwise 

known as Monod-Haldane function which is used in our 

model.  The simplified Monod-Haldane or Holling type – IV 

function is a modification of the Holling type-III function.  In 

this paper, we focus on prey-predator system with Holling type 

–IV by introducing intra-specific competition and establish 

results for boundedness, existence of a positively invariant and 

the locally asymptotical stability of coexisting interior 

equilibrium. 

 

II.  THE MODEL 

 

The prey-predator systems have been discussed widely in the 

many decades.  In the literature many studies considered the 

prey-predator with functional responses. However, 

considerable evidence that some prey or predator species have 

functional response because of the environmental factors.  It is 

more appropriate to add the functional responses to these 

models in such circumstances. For example a system is 

suggested in (1), where ( )x t and ( )y t  represent densities or 

biomasses of the prey-species and predator-species, 

respectively; ( )p x  and ( )q x  are the intrinsic growth rates of 

the predator and prey respectively; ,     are the death rates 

of  prey and predator respectively. 

If  
2

( )
1

m x
p x

x



 and  ( ) 1q x ax x   , in ( )p x  

assuming 1a   in general function,  where a is the  half-

saturation constant  in the Holling type IV functional response, 

then Eq.(1) becomes  

                    (2) 

Here , , ,a m   are all positive parameters. 

Now introducing harvesting factor on prey and intra-specific 

competition, the Eq.(2) becomes 

 

                                         (3) 

 

with (0 ), (0 ) 0x y   and , , , , , ,m a b e   , ,q E  are all 

positive constants. 

Where a is the intrinsic growth rate of the prey population;   

is the intrinsic death rate of the predator population; b  is 

strength of intra-specific competition among prey species;   

is strength of intra-specific competition among predator 

species; m  is direct measure of predator immunity from the 

prey;   is maximum attack rate of prey by predator , e  

represents the conversion rate, E  is harvesting effort and 

finally q  is the catchability coefficient. The catch-rate 

function q E  is based on thecatch-per-unit-effort (CPUE). 

 

III.  EXISTENCE AND LOCAL STABILITY ANALYSIS 

WITH PERSISTENCE 

 

In this section, we first determine the existence of the fixed 

points of the differential equations (3), and then we investigate 

their stability by calculating the eigen values for the variation 

matrix of (3) at each fixed point.   To determine the fixed 

points, the equilibrium are solutions of the pair of equations 

below: 

                              (4) 

 

By simple computation of the above algebraic system, it was 

found that there are three nonnegative fixed points: 

(i)  0
0, 0E  is the trivial equilibrium point always exists. 

(ii)
1

, 0
a q E

E
b

 
  
 

 is the axial fixed point always exists, 

as the prey population grows to the carrying capacity in the 

absence of predation. 

(iii)  
* *

2
,E x y  is the positive equilibrium  point exists in 

the interior of the first quadrant if and only if there is a positive 

solution to the following algebraic nonlinear equations 

We have the following polynomial withfifth and third degree. 
* 5 4 3 2

5 4 3 2 1 0

* 3 2

3 2 1 0

x B x B x B x B x B x B

y A x A x A x A

     

   

              (5)  

 

Where 

 
5 4 32 2 2 2 2 2

2
,   ,   ,

a E qb b
B B B

e m e m e m

 

  

 
  

 
And 

 

3 2 1 0
, , ,

b a E q b a E q
A A A A

m m m m   

   
   

 
 

Remark 1:  There is no equilibrium point on y  axis as the 

predator population dies in the absence of its prey. 
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Lemma: For values of all parameters, Eqn.(3) has fixed points, 

the boundary fixed point and the positive fixed point  
* *
,x y  

, where  
* *
,x y  satisfy 

                                               (6) 

Now we study the stability of these fixed points.  Note that the 

local stability of a fixed point  ,x y  is determined by the 

modules of Eigen values of the characteristic equation at the 

fixed point.  

The Jacobian matrix J of the map (3) evaluated at any point 

 ,x y  is given by  

                                                  (7) 

Where 
 

 

2

1 1 2
2

1
2

1

m y x
a a b x E q

x

 
   



; 
1 2 2

1

m x
a

x


 


 

 
 

 

2

2 1 2
2

1

1

e m y x
a

x

 




   ;

 
2 2 2

2
1

e m x
a y

x


   


 

and the characteristic equation of the Jacobian matrix 

 ,J x y  can be written as 

    
2

, , 0p x y q x y    , 

 Where  

   11 22
,p x y a a   ,             

  11 22 12 21
,q x y a a a a  . 

In order to discuss the stability of the fixed points, we also 

need the following lemma, which can be easily proved by the 

relations between roots and coefficients of a quadratic 

equation. 

 

Theorem:  Let
2

( )F P Q     . Suppose that 

 1 0F   , 
1 2
,   are two roots of ( ) 0F   .  Then (i) 

1
| | 1   and 

2
| | 1   if and only if  1 0F    and 1Q  ; 

(ii) 
1

| | 1   and 
2

| | 1   (or  
1

| | 1   and 
2

| | 1  ) if and 

only if  1 0F   ; 

(iii) 
1

| | 1   and 
2

| | 1   if and only if  1 0F    and 

1Q  ; 

(iv) 
1

1    and 
2

| | 1   if and only if  1 0F    and 

0 , 2P  ; 

(v) 
1

  and 
2

 are complex and 
1

| | 1   and 
2

| | 1   if and 

only if 
2

4 0P Q   and 1Q  . 

Let 
1

  and 
2

  be two roots of (7), which are called Eigen 

values of the fixed point  ,x y .  We recall some definitions 

of topological types for a fixed point  ,x y .  A fixed point 

 ,x y is called a sink if  
1

| | 1   and 
2

| | 1  , so the sink is 

locally asymptotic stable.   ,x y  is called a source if 
1

| | 1   

and 
2

| | 1  , so the source is locally un stable.   ,x y  is 

called a saddle if 
1

| | 1   and 
2

| | 1   (or  
1

| | 1   and 

2
| | 1  ).  And  ,x y  is called non-hyperbolic if either  

1
| | 1   and 

2
| | 1  .   

Proposition 1:  The Eigen values of the trivial fixed 

point  0
0, 0E   is locally asymptotically stable if 

,   1
a

E
q

   (i.e.,) 
0

E  is sink point, otherwise unstable 

if ,   1
a

E
q

  , and also 
0

E  is saddle point 

if ,   1
a

E
q

  , 
0

E  is non-hyperbolic point 

if ,   1
a

E
q

  . 

Proof:  In order to prove this result, we estimate the Eigen 

values of Jacobian matrix J at  0
0, 0E  .  On substituting 

 ,x y  values in (7) we get the Jacobian matrix for 
0

E  

 

0

  0
(0 , 0 )                                                                         

0

a E q
J



 
  

 

 

Hence the Eigen values of the matrix are 

1 2
= ,  =                         a E q     

Thus it is clear that  by Theorem, 
0

E  is sink point if  

1 , 2
| | 1  ,   1

a
E

q
   ,that is 

0
E  is locally 

asymptotically stable. 
0

E  is unstable (i.e.,) source if 

1 , 2
| | 1  ,   1

a
E

q
   . 

And also 
0

E  is saddle point 

if
1 2

| | 1,  | | 1   ,   1
a

E
q

   ,
0

E  is non-

hyperbolic point if 
1 2

| | 1  o r  | | 1    o r  1
a

E
q

   . 
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Proposition 2:  The fixed point 
1

, 0
a E q

E
b

 
  
 

 is locally 

asymptotically stable, that is sink if 

 

 

22

E  <  a n d   
b a E qa

m
q b e a E q

 



; 

1
E  is locally unstable, 

that is source if 
 

 

22

E  >  a n d   
b a E qa

m
q b e a E q

 



; 

1
E  is a 

saddle point if 
 

 

22

E  >  a n d   
b a E qa

m
q b e a E q

 



and 

1
E  is 

non-hyperbolic point if either E  =  
a

q
or 

2 2 2 2 2
4

2 2

a b e m b e m b
E

q q q

  
   . 

Proof:  One can easily see that the Jacobian matrix at 
1

E  is 

 

 

 

 

22

1

22

, 0                                                                         

0

b m a E q
E q a

b a E qa
J

b b e m a E q

b a E q





  
 

   
   

 
 

   

 

Hence the Eigen values of the matrix are  

 

 
1 2 22

| |= ,   | |=                                                                        
b e m a E q

E q a

b a E q


 




 

By using Theorem, it is easy to see that, 
1

E  is a sink if 

 

 

22

E  <  a n d   
b a E qa

m
q b e a E q

 




; 

1
E  is a source if  

 

22

E  >  a n d   
b a E qa

m
q b e a E q

 




;
1

E  is a 

saddle  if
 

 

22

E  >  a n d   
b a E qa

m
q b e a E q

 



; and 

1
E  is a 

non-hyperbolic  if either E  =  
a

q
or 

2 2 2 2 2
4

2 2

a b e m b e m b
E

q q q

  
   . 

Remark 2:  If 
2

2 2
( ) ( ) 0T r J D e t J    , then the 

necessary and sufficient condition for linear stability are 

2 2
( ) 0   a n d   ( ) 0T r J D e t J  . 

 

IV.  LOCAL STABILITY AND DYNAMIC BEHAVIOUR 

AROUND INTERIOR FIXED POINT 
2

E  

 

Now we investigate the local stability and bifurcations of 

interior fixed point 
2

E .  The Jacobian matrix at 
2

E  is of the 

form  

 

                    (8) 

Its characteristic equation is  
2

2 2
( ) ( ) ( ) 0F T r J D e t J       where T r is the 

trace and D et  is the determinant of the Jacobian matrix 

2
( )J E  defines in Eq.(8), (by Lemma) where  

 
and  

 

and  

Fig. (1-3)  shows that prey density first birucates 2 cycles, 4 

cycles, forms chaoticband and then settles down to a stable 

fixed point with various factor values. 

 

 

 

2

2

2 2 * * *

3 3
*

1

                                                           

1

e m x y x

x

 

 



 

By Remark 2,  
2

E  is stable if 
1 2

0     and 

1 2 3
. 0      that is  

2
E  is stable if 

   
 

3 2
  E    >    2                                                        

a b x y
e x y x e x y

q q

  
   

                                                                      (9) 

and 

 

           (10) 

If both equations (9) and (10) are satisfied, then the interior 

equilibrium point will be stable. 

 

V.  NUMERICAL SIMULATION 

 

In this section, we undertake the numerical simulations of the 

prey-predator system (3) for the case when there is intra-

specific competition with Holling type IV functional response.  

In the sequel, we plot diagrams for the prey system, the trivial 

and axial equilibrium points and also we present the 

bifurcation diagrams of the model (3) that have been obtained 

with data from 500 iterations with time-step of 0.005 units. The 

bifurcation diagrams are presented with the presence of 

predator and in the absence of predator. The plots have been 

generated using MATLAB 7. 
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The prey-predator system with the effect of harvested prey 

species on a Holling type IV functional response , intra-

specific competition exhibits a variety of dynamical behaviour 

in respect of the population size.  The population shows several 

equilibrium states, and for certain higher values of the 

parameters, there can be infinite number of such possibilities 

so far as the population size is concerned.  

Fig (4-8) shows that stabilized prey density first bifurcates 2 

cycles, 4 cycles, forms a little chaos and then forms chaotic 

band with various harvesting factors values, that is increasing 

the parameters effectively makes the bounds on the system 

tighter and pushes it from stability towards unstable behaviour. 

This unstability manifests itself as a period-doubling 

bifurcation.  At this point, the population behaviour seems to 

lose any stablility.  This appearance of nonperiodic behaviour 

from equilibrium population levels may be referred to as the 

“period-doubling route to chaos”, the non periodic dynamics 

being described as chaotic(Fig.8). 

 

VI. Conclusion 

 

In this paper, we investigated the complex behaviours of  two 

species prey- predator system as a discrete-time dynamical 

system with the effect of harvested prey species on a Holling 

type IV functional response and intra-specific competition in 

the closed first quadrant,  and showed that the unique positive 

fixed point of system (3) can undergo bifurcation and chaos.  

Bifurcation diagrams have shown that there exists much more 

interesting dynamical and complex behaviour for system (3) 

including periodic doubling cascade, periodic windows and 

chaos. All these results showed that for richer dynamical 

behaviour of the discrete model (3) under periodical 

perturbations compared to the continuous model.  The system 

is examined via the techniques of local stability analysis of the 

equilibrium points from which we obtain the bifurcation 

criterion.   

The numerical simulation of the population size shows a 

succession of period-doubling bifurcations leading up to chaos.  

The effect of intra-specific competition with harvested prey 

species on a Holling type IV functional response on the model 

depends on the value of the intrinsic growth rate.  For values 

corresponding to the stable system dynamics, the population 

undergoes a linear change.  However, for values of the intrinsic 

growth rate which makes the system dynamics bifurcates.  It 

may thus be concluded that the stability properties of the 

system could switch with the effect of harvested prey species 

on a Holling type IV functional response with intra-specific 

competition that is incorporated on different densities in the 

model. 
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Appendix:  (Note:  All the following figures show the bifurcation diagram) 

 

  

Fig. (1) 

a=0 to 4, b=0.2,  =0.5, m=0.75, q =0.25 and E =5 

Fig. (2) 

a=0 to 4, b=0.2,  =0.5, m=0.75, q =0.3 and E =5 

 

 

Fig. (3) 

a=0 to 4, b=0.2,  =0.5, m=0.75, q =0.5 and E =4 

Fig. (4) 

a=0 to 4, b=0.2,  =0.5, m=0.75, q =0.4 and E =2 

 
 

Fig. (5) 

a=0 to 4, b=0.2,  =0.5, m=0.75, q =0.5 and E =1 

Fig. (6) 

a=0 to 4, b=0.2,  =0.5, m=0.75, q =0.2 and E =2 

 
 

Fig. (7) 

a=0 to 4, b=0.2,  =0.5, m=0.75, q =0.3 and E =1 

 

Fig. (8) 

a=0 to 4, b=0.2,  =0.5, m=0.75, q =0.005 and E =10 
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Fig. (9) 

a=0 to 4, b=0.2,  =0.5, m=0.75, q =0.005 and E =1 

 

 

 


